Differentiation of engrafted neuronal-restricted precursor cells is inhibited in the traumatically injured spinal cord.

نویسندگان

  • Qi-Lin Cao
  • Russell M Howard
  • Jessica B Dennison
  • Scott R Whittemore
چکیده

Differentiation of pluripotent neural stem cells engrafted into the adult normal and injured spinal cord is restricted to the glial lineage, suggesting that in vitro induction toward a neuronal lineage prior to transplantation and/or modification of the host environment may be necessary to initiate and increase the differentiation of neurons. In the present study, we investigated the differentiation of neuronal-restricted precursors (NRPs) grafted into the normal and contused adult rat spinal cord. NRPs proliferated through multiple passages in the presence of FGF2 and NT3 and differentiated into only neurons in vitro in the presence of retinoic acid and the absence of FGF2. Differentiated NRPs expressed GABA, glycine, glutamate, and ChAT. Two weeks to 2 months after engraftment of undifferentiated NRPs into adult normal spinal cord, large numbers of surviving cells were seen in all of the animals. The majority differentiated into betaIII-tubulin-positive neurons. Some transplanted NRPs expressed GABA and small numbers were glutamate- and ChAT-positive. NRPs were also transplanted into the epicenter of the contused adult rat spinal cord. Two weeks to 2 months after transplantation, some engrafted NRPs remained undifferentiated nestin-positive cells. Small numbers were MAP2- or betaIII-tubulin-positive neurons. However, the expression of GABA, glutamate, or ChAT was not observed. These results show that NRPs can differentiate into different types of neurons in the normal adult rat spinal cord, but that such differentiation is inhibited in the injured spinal cord. Manipulation of the microenvironment in the injured spinal cord will likely be necessary to facilitate neuronal replacement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Neuropathic Pain After Graft of Bone Marrow Stromal Cells in the Spinal Cord Contusion of Rat

Purpose: The purpose of this study was the investigation of thermal and mechanical Allodynia after BMSCs grafting in the Spinal Cord Contusion of rat Materials and Methods: In this study used 40 female Sprague- Dawley 6-8 week old that 33 rats received vertebral laminectomy to expose spinal cord (L1 vertebral level). The cord was then contused with the weight drop device. Experimental groups c...

متن کامل

Polarized Macrophages Have Distinct Roles in the Differentiation and Migration of Embryonic Spinal-cord-derived Neural Stem Cells After Grafting to Injured Sites of Spinal Cord

Spinal cord injury (SCI) frequently provokes serious detrimental outcomes because neuronal regeneration is limited in the central nervous system (CNS). Thus, the creation of a permissive environment for transplantation therapy with neural stem/progenitor cells (NS/PCs) is a promising strategy to replace lost neuronal cells, promote repair, and stimulate functional plasticity after SCI. Macropha...

متن کامل

Transplantation of Specific Human Astrocytes Promotes Functional Recovery after Spinal Cord Injury

Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulti...

متن کامل

Grafted lineage-restricted precursors differentiate exclusively into neurons in the adult spinal cord.

Multipotent neural stem cells (NSCs) have the potential to differentiate into neuronal and glial cells and are therefore candidates for cell replacement after CNS injury. Their phenotypic fate in vivo is dependent on the engraftment site, suggesting that the environment exerts differential effects on neuronal and glial lineages. In particular, when grafted into the adult spinal cord, NSCs are r...

متن کامل

Transplantation of glial-restricted precursor cells into the adult spinal cord: survival, glial-specific differentiation, and preferential migration in white matter.

Glial-restricted precursor (GRP) cells are among a number of candidate cells for transplantation repair of CNS injury. The isolation and characterization of these cells in vitro have been described previously, but their in vivo properties are not well understood. We examined the fate and migration of grafted fetal GRP cells harvested from alkaline phosphatase-expressing transgenic rats into int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Experimental neurology

دوره 177 2  شماره 

صفحات  -

تاریخ انتشار 2002